
A Comparative Study of Deep Reinforcement Learning and Expectimax Search
for the Game 2048

Soham Konar
Stanford University
skonar@stanford.edu

Danny S. Park
Stanford University

danspark@stanford.edu

Andrew Wu
Stanford University
acwu02@stanford.edu

Abstract

The game 2048 presents a challenging environment for
artificial intelligence agents due to its large state space and
stochastic nature. This paper presents a comparative study
of two distinct approaches to solving 2048: a model-free
Deep Q-Network (DQN) and a model-based Expectimax
search algorithm. We implement and evaluate a standard
DQN, a variant using Prioritized Experience Replay (PER),
and an Expectimax agent at various search depths. Our
quantitative results show that the Expectimax agent, partic-
ularly at depth 4 achieving a mean score of 458.2, signif-
icantly outperforms the DQN variants, with performance
scaling with search depth until constrained by computa-
tional limits. We analyze the performance of each agent,
discuss the challenges encountered, including hyperparam-
eter sensitivity in DQNs, and propose directions for future
work, such as exploring hybrid agent architectures.

One-Page Extended Abstract

Motivation: The game 2048, while governed by sim-
ple rules, poses a significant challenge for artificial intel-
ligence due to its high-branching-factor, stochastic nature,
and large state space. This work is motivated by the desire
to compare two distinct AI paradigms in this complex en-
vironment: model-free deep reinforcement learning (DQN)
and model-based classical search (Expectimax). We aim to
understand their relative performance, computational trade-
offs, and the impact of specific enhancements like Priori-
tized Experience Replay (PER).

Method: We implemented and evaluated three primary
agents. The first is a Vanilla Deep Q-Network (DQN),
which uses a convolutional neural network to approximate
the action-value function and is trained with a standard ex-
perience replay buffer. The second is a DQN with Pri-
oritized Experience Replay (PER), an enhancement that
samples transitions from the replay buffer based on their
TD error, allowing the agent to learn from more ”sur-

prising” events. The third is a depth-limited Expectimax
agent, which uses a handcrafted heuristic function to eval-
uate board states. This heuristic considers factors like tile
monotonicity, smoothness, the number of empty cells, and
the value of the maximum tile. The Expectimax agent ex-
plores the game tree to a specified depth, averaging over the
outcomes of random tile spawns (the ”chance” nodes) and
selecting the move that maximizes its expected score (the
”max” nodes).

Implementation and Results: Our agents were evalu-
ated based on mean score, median score, and the maximum
tile achieved. The Expectimax agent demonstrated signifi-
cantly stronger performance than both DQN variants, with
its mean score increasing with search depth up to depth 4
(mean score: 458.2). At depth 5, performance degraded,
likely due to the extreme computational cost (over 13 hours
for 20 episodes), which limited effective exploration. The
Vanilla DQN (mean score: 93.52) unexpectedly outper-
formed the PER-enhanced DQN (mean score: 81.44). This
suggests that our DQN implementations are highly sensitive
to hyperparameters and may require more extensive tuning
or longer training periods to realize the benefits of PER.

Discussion and Conclusion: Our findings indicate that
for the game 2048, a well-designed, model-based search
agent like Expectimax can outperform learning-based DQN
agents, provided sufficient computational resources for an
adequate search depth. The performance of DQN agents
is heavily dependent on hyperparameter tuning, and tech-
niques like PER do not guarantee improvement without
careful optimization. The study highlights a clear trade-
off: Expectimax offers strong performance at the cost of
high per-move computation, while DQNs have a lower per-
move cost but require extensive offline training and are sen-
sitive to their configuration. Future work could explore hy-
brid models that use a learned value function from a DQN
as a heuristic for a tree search, potentially combining the
strengths of both approaches.

1

Figure 1. Example 2048 board.

1. Introduction
The game 2048, played on a 4x4 grid, is a seemingly

simple puzzle with deep strategic complexity. The objective
is to slide numbered tiles in one of four cardinal directions,
merging tiles of the same value to create a tile with the value
2048. After each move, a new tile (either a ’2’ or a ’4’) ap-
pears in a random empty cell. While simple for humans to
learn, mastering the game is a significant challenge for arti-
ficial intelligence due to its large state space (approximately
1016 states [5]), stochastic tile spawns, and the sparse, de-
layed nature of rewards, which can make credit assignment
difficult and slow down convergence for learning agents like
DQN.

This project aims to explore and compare the effective-
ness of two fundamentally different AI paradigms in the
context of 2048: model-free reinforcement learning and
classical model-based search. Our primary research ques-
tions are:

1. How does the performance of a Deep Q-Network
(DQN) agent compare to a traditional Expectimax
search agent on the game 2048?

2. Can advanced techniques like Prioritized Experience
Replay (PER) significantly improve the performance
and learning efficiency of a DQN agent in this envi-
ronment?

3. What are the trade-offs between the learning-based ap-
proach (DQN) and the search-based approach (Expec-
timax) in terms of performance, computational cost,
and strategic behavior?

To answer these questions, we implement a Vanilla
DQN, a DQN enhanced with PER, and an Expectimax agent
with a carefully designed heuristic function. We evalu-
ate these agents based on their game scores and highest
achieved tiles, providing a quantitative comparison and a
discussion of their respective strengths and weaknesses.

2. Related Work
Significant research has been conducted on applying re-

inforcement learning (RL) to 2048. Goga experimented
with various DQN architectures and reward functions, find-
ing that a modified, non-negative reward function combined
with normalized encodings yielded the best results, though
learning still plateaued [1]. Szubert and Jaskowski utilized
temporal difference (TD) learning with n-tuple networks to
represent value functions, achieving a win rate of over 97%
and noting that the game’s stochasticity made explicit ex-
ploration unnecessary [4]. More recently, Guei proposed
an optimistic TD learning framework that achieved state-
of-the-art (SOTA) performance with fewer network param-
eters, demonstrating high average scores and a 72% rate of
reaching the 32768-tile [2]. Our work distinguishes itself by
providing a direct, side-by-side comparison of a modern RL
technique (DQN with PER) against a strong classical search
algorithm (Expectimax), focusing on the practical trade-offs
between these approaches. Classical search methods, in-
cluding variants of minimax and Monte Carlo Tree Search,
have also been extensively applied to 2048, often leveraging
sophisticated heuristics and pruning techniques to manage
the game’s complexity.

3. Experimental Setup
3.1. Environment

All experiments are conducted using the open-
source Python task environment Gymnasium-2048 (gymna-
sium 2048 / TwentyFortyEight-v0). The action space is dis-
crete with four actions (up, down, left, right), and the obser-
vation space is a 4x4 grid of integer tile values, represented
as a Box(low=0, high=217, shape=(4, 4), dtype=int32).

3.2. Baselines

We compare our agent extensions against two main base-
lines:

• Random Agent: An agent that selects a legal move
uniformly at random at each step. This serves as a con-
ceptual lower bound for intelligent play.

• Vanilla DQN: Our primary baseline is a Deep Q-
Network with a standard experience replay buffer,
trained for 10,000 episodes. This allows us to directly
measure the impact of our main extension, Prioritized
Experience Replay.

3.3. Evaluation Metrics

To evaluate agent performance, we use the following
metrics, averaged over 20 evaluation episodes for all agents:

• Mean Score: The average final score achieved across
all evaluation episodes.

• Median Score: The median final score, which is less
sensitive to outlier performances.

• Max Tile Achieved: The highest tile value (e.g., 1024,
2048) reached by the agent during evaluation.

4. Methods
4.1. Deep Q-Network (DQN)

Our baseline model is a Deep Q-Network (DQN) archi-
tecture. The network consists of two convolutional layers,
each with a kernel size of two and followed by a ReLU non-
linearity, and two fully-connected linear layers. The model
is trained using an epsilon-greedy policy to balance explo-
ration and exploitation. For optimization, we use the Adam
optimizer with an initial learning rate of 5 × 10−5. The
network weights are updated using the Q-learning rule:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(1)

where s is the current state, a is the action taken, r is the
reward received, s′ is the next state, a′ is the action in the
next state, α is the learning rate, and γ is the discount factor.

4.1.1 Learning Rate Hyperparameter Finetuning

As part of our investigation, we experimented with different
learning rates to observe their effect on agent performance.
The results for a learning rate of 5 × 10−4 are presented in
our Results section to highlight hyperparameter sensitivity.

4.1.2 Prioritized Experience Replay (PER)

Our Deep Q-Network (DQN) agent, implemented in
dqn.py, utilizes Prioritized Experience Replay (PER) [3]
to improve learning efficiency and performance. Unlike
standard experience replay which samples transitions uni-
formly, PER gives priority to transitions that the agent can
learn most from, typically those with a high temporal differ-
ence (TD) error. This focused sampling accelerates learning
by replaying important transitions more frequently.

The core of our PER implementation resides in the Pri-
oritizedReplayBuffer class within dqn.py. This class uses
a SumTree data structure, a specialized binary tree that en-
ables efficient O(log N) updates of priorities and sampling
of experiences. When a new transition (composed of state,
action, reward, next state, and done flag) is added to the
buffer using the push method, it is initially assigned the
current maximum priority recorded in the tree. This en-
sures that all new experiences are considered for sampling
at least once with high importance until their actual TD er-
ror is computed.

The priority pi for a given transition i is determined by
its absolute TD error δi. Specifically, pi = (|δi| + ϵ)α,

where α (set to 0.6 in our DQNAgent) is a hyperparame-
ter controlling the degree of prioritization (α = 0 reverts to
uniform random sampling). The small constant ϵ (1e-5 in
our DQNAgent) is added to ensure that transitions with zero
TD error still have a non-zero probability of being sampled.
After a batch of transitions is processed and their TD er-
rors are computed, the update priorities method is called
to refresh their respective priorities in the SumTree. The
max priority attribute of the buffer is dynamically updated
to track the highest priority seen so far.

Sampling from the PrioritizedReplayBuffer is handled
by the sample method. It draws a batch of transitions where
each transition’s probability of being selected is propor-
tional to its stored priority pi. To correct for the bias intro-
duced by this non-uniform sampling strategy, Importance
Sampling (IS) weights are computed for each sampled tran-
sition. The IS weight wi is given by wi = (N · P (i))−β ,
normalized by 1/maxj(wj), where N is the total number
of items in the replay buffer and P (i) is the probability
of sampling transition i. The hyperparameter β (anneal-
ing from beta start=0.4 to 1.0 over beta frames=250,000,
as managed by beta by frame) controls the amount of cor-
rection. These IS weights are then used to scale the loss for
each transition in the batch during the DQN’s learning up-
date (when use per is true, nn.SmoothL1Loss is used with
its reduction parameter set to ’none’ to facilitate this). This
ensures that the parameter updates remain unbiased despite
the prioritized sampling. The DQNAgent class seamlessly
integrates this PER mechanism when its use per parameter
is set to true.

4.2. Expectimax Search

The file expectimax.py implements a depth-limited
expectimax search that chooses the next move in 2048
by alternating between “max” nodes (our moves) and
“chance” nodes (random tile spawns). It begins in expec-
timax search, which masks out illegal moves, simulates
each legal slide via simulate move, and accumulates
the immediate reward plus the expected future value
returned from chance node value. If a slide doesn’t
change the board, it still explores that branch by descend-
ing into the chance node, penalizing unproductive moves
implicitly by having their follow-on evaluations unchanged.

At the player’s decision nodes, max node value ex-
amines each legal direction, caches results by hashing
the board and depth, and returns the highest reward-plus-
chance value. It stops recursing when the depth limit is
reached or when no moves remain, at which point it calls
evaluate board. In similar fashion, chance node value
enumerates all empty cells, spawns a “2” tile with 90%
probability and a “4” tile with 10%, divides by the number
of empty cells, and sums those weighted values. Memoiza-

tion in both functions keeps repeated subtrees from being
recomputed.

Terminal states are detected by is terminal, which sim-
ply checks that no legal moves exist. When the recursion
bottoms out or the board is terminal, evaluate board com-
putes a weighted heuristic: it adds the sum of tile values,
the count of empty cells, a monotonicity score (how con-
sistently increasing the tiles are along rows and columns),
a smoothness penalty (differences between neighbors), and
the exponent of the largest tile. Helper functions calcu-
late monotonicity and calculate smoothness quantify those
spatial patterns so that the heuristic pushes toward empty,
ordered, and clustered boards. For example, monotonicity
can be calculated by summing the differences between adja-
cent tiles in increasing sequences along rows and columns,
and smoothness by penalizing differences between neigh-
boring tiles. While our implementation uses a weighted sum
of these and other features (empty cells, max tile value),
conceptual formulas can be represented as:

Smono(B) =
∑

r∈rows

3∑
i=1

I(Br,i ≤ Br,i+1) (2)

+
∑
c∈cols

3∑
j=1

I(Bj,c ≤ Bj+1,c) (3)

Ssmooth(B) = −
∑

adjacent pairs (t1,t2)

| log2 t1 − log2 t2| (4)

where B is the board state and I(·) is the indicator function.
These specific formulas are illustrative of the concepts.

Finally, when run as a script, the module demonstrates
itself on sample, empty, and full boards by printing
the tile grid, the best action at a given search depth,
and the heuristic score. This organization cleanly sepa-
rates game logic (legal move mask/simulate move) from
search control flow, memoization, and evaluation heuristics.

5. Results
In this section, we present the performance of our im-

plemented agents and the outcomes of our hyperparameter
tuning experiments. We evaluated agents based on mean
score, median score, mean episode length, and the highest
tile achieved.

5.1. DQN Agent Performance

We conducted several experiments to evaluate and im-
prove our Deep Q-Network (DQN) agent. The base-
line ”Vanilla DQN” uses a standard experience replay
buffer. We then implemented ”Prioritized Experience Re-
play (PER)” to assess its impact. Finally, we performed

”Hyperparameter Finetuning,” focusing on the learning rate
(LR); the results presented here are for a sample learning
rate of 5×10−4. As Table 1 shows, the Vanilla DQN attains
a mean score of 93.52, whereas the PER variant actually un-
derperforms with a mean score of 81.44. The learning rate
finetuning experiment resulted in the lowest performance.
These results highlight the sensitivity of DQN performance
to both architectural choices like PER and fundamental hy-
perparameters like the learning rate.

Table 1. Performance of DQN-based agents. ”Best Tile” indicates
the highest tile value achieved.

Experiment Mean Score Median Score Best Tile

Vanilla DQN 93.52 76.0 28 (256)
PER 81.44 60.0 27 (128)
LR Finetuning 54.80 44.0 25 (32)

To understand these performance differences, we ana-
lyzed the training dynamics. Figure 2 plots the TD er-
ror curve for the Vanilla DQN. The curve shows a rela-
tively smooth decrease in TD error, which begins to plateau
around 4,000 episodes, suggesting convergence of the value
estimates. This stable learning trajectory likely contributes
to its better performance compared to the other DQN vari-
ants.

Figure 2. TD error for the Vanilla DQN decreases sharply and then
plateaus around 4,000 episodes, indicating convergence in value
estimates and correlating with its relatively stable performance.

In contrast, Figure 3 depicts the TD error for the DQN
with PER. This curve exhibits larger oscillations, partic-
ularly around the 2,000-episode mark, and a less consis-
tent decline compared to the Vanilla DQN. Such instability
might suggest that the prioritization mechanism, perhaps
due to the chosen α and β parameters, led to less stable
learning, which could explain its lower final scores.

Finally, Figure 4 shows the TD error for the DQN with
a higher learning rate (5 × 10−4). The error remains con-

Figure 3. The TD error curve for DQN with PER shows notable
oscillations, especially around 2,000 episodes, suggesting learning
instability that may have contributed to its lower scores compared
to Vanilla DQN.

sistently high throughout training and shows erratic behav-
ior without a clear downward trend. This indicates that the
learning process failed to converge effectively, directly ex-
plaining its significantly lower performance.

Figure 4. The TD error for the DQN with a learning rate of 5 ×
10−4 remains high and erratic, indicating a failure to converge and
explaining its poor performance.

5.2. Expectimax Agent Performance

The Expectimax agent was evaluated across different
search depths, from 1 to 5. Each depth was tested for 20
episodes. Table 2 details the Expectimax agent’s perfor-
mance. As the table illustrates, mean scores improve with
search depth up to depth 4 (458.2), after which depth 5
shows a notable decrease (356.0). We observed a general
trend of improving scores with increased depth up to depth

4. Performance notably decreased at depth 5. This is likely
due to the exponential increase in computation time with
depth; for instance, evaluating 20 episodes at depth 5 took
over 13 hours, compared to approximately 1.6 hours for
depth 4. Such long computation times might lead to prac-
tical limitations in exploring the game space effectively for
very deep searches. The ’Max Tile Achieved’ is derived
from the max tile exponent provided in the logs.

Table 2. Performance of Expectimax agent at different search
depths (20 episodes each).

Depth Mean Score Median Score Max Tile Achieved

1 91.0 74.0 25 (32)
2 297.0 192.0 27 (128)
3 412.8 324.0 27 (128)
4 458.2 364.0 27 (128)
5 356.0 182.0 28 (256)

6. Discussion

Our experiments provide insights into the performance
of different agents on the 2048 game.

For the DQN-based approaches, the Vanilla DQN served
as a baseline. Interestingly, the introduction of Prioritized
Experience Replay (PER) did not yield an improvement in
mean or median scores over the Vanilla DQN in our setup
(81.44 vs. 93.52 mean score). This outcome is somewhat
counter-intuitive, as PER is generally expected to acceler-
ate learning and improve performance by focusing on more
significant transitions. This might suggest that the PER pa-
rameters (α, β, ϵ) were not optimally tuned for this specific
task, or that the benefits of PER might only become ap-
parent with a much larger number of training episodes or
a different network architecture. The hyperparameter fine-
tuning experiment, which tested a learning rate of 5× 10−4

(shown as ”LR Finetuning”), resulted in lower performance
compared to both Vanilla DQN and PER. This highlights
the sensitivity of DQN agents to hyperparameter choices
and underscores the need for more extensive tuning to find
an optimal configuration. For PER specifically, we sus-
pect our chosen α = 0.6 may have overweighted rarer or
noisy transitions, leading to instability. Future work should
systematically sweep PER hyperparameters, for instance
α ∈ {0.4, 0.5, 0.7, 0.8} and different β annealing schedules
(e.g., slower annealing to 1.0), to determine if a more con-
servative prioritization scheme can narrow the performance
gap or surpass the Vanilla DQN.

The Expectimax agent demonstrated a clear trend of im-
proved performance with increasing search depth, up to
depth 4, which achieved the highest mean score (458.2).
However, performance notably declined at depth 5 (mean
score 356.0), despite achieving the highest single tile (28 =

256) among all Expectimax runs. This decline is strongly
correlated with the exponential increase in computation
time. Evaluating 20 episodes at depth 5 took over 13 hours,
compared to approximately 1.6 hours for depth 4. Such pro-
longed computation times for deeper searches can become
a practical bottleneck. The choice of heuristic function for
Expectimax is also critical, and while our current heuris-
tic (based on monotonicity, smoothness, free tiles, and max
tile) performs reasonably, its optimality is an area for fur-
ther investigation. The performance drop at depth 5, de-
spite longer computation, suggests that the sheer time taken
per move (over 13 hours for 20 episodes) may have led to
practical limitations in how effectively the search could be
conducted, possibly due to implicit pruning or an inability
to explore sufficient breadth at deeper nodes within reason-
able timeframes. The term max tile exponent in the logs
was used to derive the ’Max Tile Achieved’.

Contextualizing our best Expectimax performance, the
mean score of 458.2 at depth 4 is respectable but lower than
some highly optimized search-based agents reported in the
literature. For example, Tiwari et al. [5] reported scores
over 600 with a beam-search hybrid. This difference could
be attributed to our heuristic’s relative simplicity, which, for
instance, does not explicitly prioritize forming smooth paths
along the grid edges or corners, a common strategy in high-
performing 2048 agents.

Comparing the two classes of agents, the Expectimax
agent, particularly at depths 3 and 4, significantly outper-
formed all our DQN implementations in terms of average
scores. This is not entirely surprising, as tree search meth-
ods can often achieve strong performance in games with
well-defined state transitions and effective heuristics, by
looking ahead multiple steps. DQN agents, on the other
hand, learn a generalized policy from experience, which can
be powerful but often requires substantial data and careful
tuning.

Several challenges were encountered during implemen-
tation. For instance, debugging the SumTree logic for Pri-
oritized Experience Replay required careful attention to in-
dexing and priority updates. Similarly, ensuring the correct-
ness and efficiency of the caching mechanism in the Expec-
timax agent was crucial for deeper searches.

The comparison between DQN and Expectimax also of-
fers broader insights into the trade-offs between model-
free and model-based approaches in stochastic environ-
ments. While model-free agents like DQN promise gen-
erality, they can be sample-inefficient and highly sensitive
to hyperparameters. Model-based methods like Expecti-
max, when a reasonable model or heuristic is available, can
achieve strong performance with less data but may struggle
with scalability or require significant domain knowledge for
heuristic engineering.

Limitations of this study include the relatively limited

scope of hyperparameter tuning for the DQN agents and
the fixed number of evaluation episodes (20) for the Ex-
pectimax agent, which might not capture the full variance
in performance. Furthermore, the exploration strategy for
DQN and the specific implementation details of PER could
be further refined.

7. Conclusion
In this project, we implemented and evaluated several

agents for the game 2048, including Deep Q-Network
(DQN) variants and an Expectimax search agent. Our
results indicate that the Expectimax agent, when config-
ured with sufficient search depth (specifically depths 3 and
4), achieved superior performance compared to the DQN
agents in terms of average game scores. The Expectimax
agent’s performance generally scaled with search depth, but
was ultimately constrained by a significant increase in com-
putational cost at higher depths (e.g., depth 5).

Among the DQN approaches, the Vanilla DQN unex-
pectedly outperformed our implementation of Prioritized
Experience Replay (PER) and a DQN with a modified learn-
ing rate (LR Finetuning). This suggests that further tuning
of hyperparameters, network architecture, and PER-specific
parameters is necessary to unlock the full potential of these
learning-based methods for 2048. The project highlights the
challenges in applying reinforcement learning to 2048 and
underscores the effectiveness of traditional search methods
when coupled with good heuristics and sufficient computa-
tional budget.

Additionally, there are several promising avenues for fu-
ture work to build upon the findings of this project.

For the DQN agents, a more comprehensive hyperpa-
rameter optimization is warranted. This includes explor-
ing a wider range of learning rates, different network ar-
chitectures (e.g., deeper or wider layers, convolutional lay-
ers to better capture spatial patterns on the board), adjust-
ments to the exploration-exploitation strategy (e.g., ϵ-decay
schedule), and fine-tuning PER parameters (α, β). Inves-
tigating other advanced DQN extensions, such as Double
DQN or Dueling DQN, could also lead to performance im-
provements. Longer training durations, potentially leverag-
ing more computational resources, would allow the agents
more experience to learn effective policies.

Regarding the Expectimax agent, further development
could focus on designing more sophisticated heuristic func-
tions. While the current heuristic considers several board
features, incorporating machine learning to learn a heuris-
tic, or using more complex handcrafted features, might en-
hance its evaluation capabilities. Optimizing the search
algorithm itself, perhaps through more aggressive pruning
techniques suitable for Expectimax or adaptive search depth
control, could also improve its efficiency.

Exploring other types of agents, such as Monte Carlo

Tree Search (MCTS), which has shown success in similar
games, or policy gradient methods, could provide alterna-
tive approaches to tackling 2048. A more extensive eval-
uation framework, involving a larger number of episodes
and comparison against established 2048 AI benchmarks,
would provide a more robust assessment of agent perfor-
mance.

Finally, hybrid approaches that combine the strengths of
learning and search could be particularly effective. For in-
stance, a DQN could be used to learn a value function that
serves as a heuristic for a shallower tree search, potentially
offering a better balance between performance and compu-
tational cost.

8. Team Contributions
Soham Konar: Implemented and ran experiments for

Expectimax. Wrote the report. Helped with the poster.

Danny Park: Implemented and ran experiments for
Vanilla DQN and LR Finetuning. Did research on existing
methods. Wrote the report. Created the poster.

Andrew Wu: Implemented and ran experiments for
PER. Did research on existing methods. Wrote the report.
Helped with the poster.

Here is the GitHub repository link for our codebase:
https://github.com/sohamkonar/CS224R_
Final_Project

References
[1] A. Goga. Reinforcement learning in 2048 game. Bachelor

thesis of Faculty of Mathematics, Physics and Informatics,
Comenius University in Bratislava, 2018. 2

[2] H. Guei. On Reinforcement Learning for the Game of 2048.
PhD thesis, National Yang Ming Chiao Tung University, 2023.
2

[3] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015. 3

[4] M. Szubert and W. Jaśkowski. Temporal difference learning of
n-tuple networks for the game 2048. In 2014 IEEE Conference
on Computational Intelligence and Games, pages 1–8. IEEE,
2014. 2

[5] V. Tiwari. From pixels to plans: Cracking 2048 with re-
inforcement learning and beam search. Medium post, Mar.
2025. Accessed 2025-06-09. 2, 6

https://github.com/sohamkonar/CS224R_Final_Project
https://github.com/sohamkonar/CS224R_Final_Project

